

SEAMLESS TRANSPORT CHAINS THROUGH HARMONISATION

Success Stories and Global Perspectives for Rail Freight

Session 2: Rail Freight and Spatial Planning

Moderator:
Alex Puissant, free lance journalist

Kurt FALLAST

Present positions:

CEO IBV-FALLAST Transport Planning Consultancy, Graz/Klagenfurt, Austria

CEO STL Solutions for Transport and Logistics, Graz, Austria

Regional Director of the Austrian Traffic Science Society, Styrian Branch

Member of Austrian Association for Research on Road-Rail-Transport (FSV)

Teaching Post "Spatial Planning and Transport" part of the Master Study for "Traffic Engineering" at Graz University of Technology

Teamleader for Transport and Infrastructure in ONSS-Project: Oman National Spatial Strategy

From 1980 to 2014: Graz University of Technology

From 2004 to 2014: Deputy Head of the Institute for Transport Planning, Graz University of Technology, Austria

SEAMLESS TRANSPORT CHAINS THROUGH HARMONISATION

Success Stories and Global Perspectives for Rail Freight

Rail Freight and Spatial planning

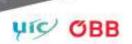
SEAMLESS TRANSPORT CHAINS THROUGH HARMONISATION

Success Stories and Global Perspectives for Rail Freight

Freight transport and Spatial Planning

- a stronger interplay for increasing synergy

Dr. Kurt Fallast
IBV-FALLAST



Spatial planning influences transport

Spatial planning		Transport
Urban sprawl	——	More difficult to find alignement
Residential zones	——	Restrictions for operating
Protected areas (landscape, heritage buildings or city quarters)	——	Restriction for finding alignement
Intensive land use	——	Generates transport
Decentralized production	—	Generates longer trips

Spatial planning is influenced by transport

Spatial planning

Transport

Development of regions
High land consumption
Delimitation of areas

GLOBAL

Environmental impacts (noise, air pollution)

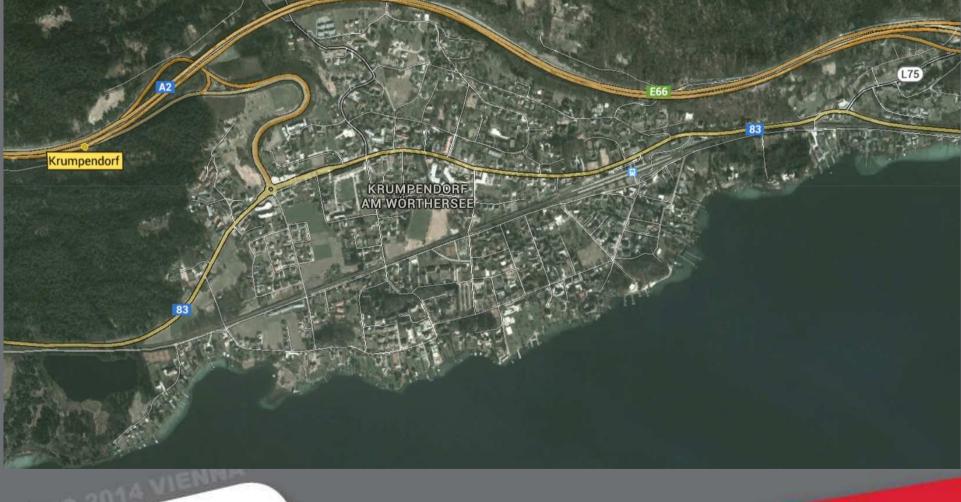
Restriction for land use as residential zones or as areas with special requirements

Increasing decentralisation

Encourages spezialisation of production on different sites

Transport infrastructure

operating


operating

Cheap transport

Cheap freight transport

How to evaluate these impacts?

Spatial planning in Transportmodel

Development scenarios (input)

Sociodemographic Development

Economic development

Spatial planning and land use

Road network
National ports
Railway network

Transport model

Environment impact model

Impacts

(output)

Accessibility

Economic impacts

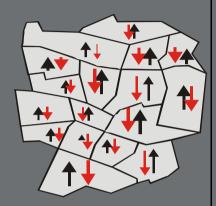
Sociodemographic impacts

Transportation network

Traffic volume (passenger, freight)

Environmental (air pollution, noise, ...)

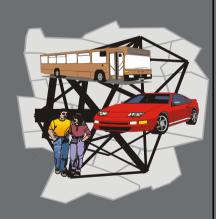
Traffic Safety



The 4-step Transport model

Step 1: Traffic generation

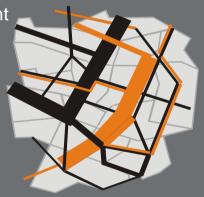
How many trips? (residential, work places, education, shopping, leisure)


Step 2: Origin-Destination-Matrix

Distribution of trips (from Origin to Destination)

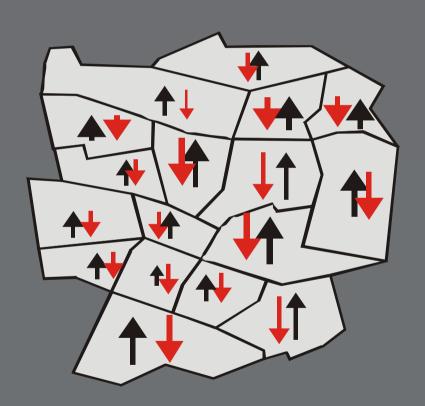
Step 3: Modal Split Mode of the trips?

- Walking
- Bicycle
- Public Transport
- Private cars
- Freight by truck
- Freight by rail



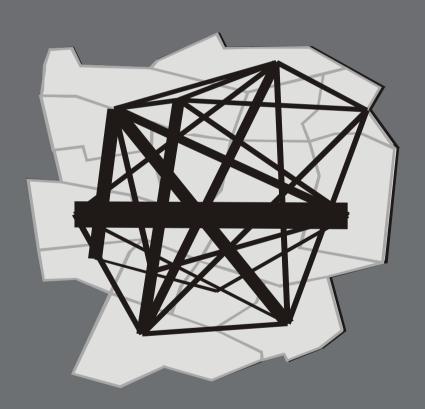
Step 4: Traffic assignement

Which route?


Criterias:

- travel time
- costs
- accessibility
- safety
- comfort

Step 1: Trip generation



How many trips?

- Intensity of land use
- Zoning (industry, trade, economy)
- Number of work places
- Shopping facilities
- Leisure facilities

Step 2: Trip distribution

Origin / Destination Matrix

- Intensity of land use
- Zoning (industry, trade)
- Number of working places
- Shopping facilities
- Leisure facilities

Step 3: Modal Split

Which mode?

- Costs
- Trip length
- Type of goods
- Multi modal facilities
- Restrictions (night time, weekend, holidays)
- Restrictions (emissions)
- Weight limits

Step 4: Traffic assignement

Which route?

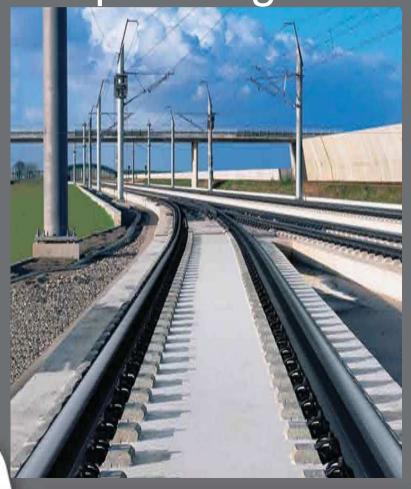
- Costs
- Transport time
- Traffic conditions
- Transport network
- Restrictions (night time, weekend, holidays,..)
- Restrictions (emissions)
- accessibility

Rail freight transport

- Rail freight transport needs large-scale spatial planning
- Rail freight transport needs regional spatial planning to secure space for intermodal facilities (terminals),
- Rail freight transport needs long-term spatial planning with vision

Criteria for industrial sites

- Connection to rail network
- Closeness to intermodal facilities
- High density of land use
- Sustainable « mobility of short trips » also for freight transport
- Concentration of industrial sites



Let's straighten things out!

operating in coordination with spatial planning

Dr. Kurt Fallast
IBV-FALLAST
Wastiangasse 14, A-8010 Graz

kurt@fallast.at

